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10 Matrices

Along with symmetry groups, matrix groups are standard ob-
jects in Galois Representation Theory. Matrix multiplication is the
group operator. An R-matrix consists only of elements from some
number system R. Examples are a Z-matrix, Q-matrix, . . .. Ma-
trices are rectangular, consisting of c columns and r rows, normally
written enclosed in brackets.

10.1 Motivation

Linear algebra is the study of equations of lines (polynomial equa-
tions of degree 1). Matrices are used to represent systems of linear
equations.

10.2 Matrix Multiplication

To multiply 2 matrices, M = M1M2, the columns of the M1 must
number the same as the rows of M2. An r1 × n matrix times an
n× c2 matrix results in an r1 × c2 matrix. Multiplication proceeds
by forming the dot product of rows of M1 by columns of M2. The
dot product of two n-tuples is the sum of the pairwise products of
elements. The Mricj entry of the product matrix is the dot product
of the rith row of M1 and the cjth column of M2.

The following examples are Z-matrices under mutiplication.

[
1 3 5

] 29
1

 = 1 · 2 + 3 · 9 + 5 · 1 = 34
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[
2 5
4 1

] [
6
8

]
=

[
2 · 6 + 5 · 8
4 · 6 + 1 · 8

]
=

[
52
32

]
10.3 Solving Systems of Equations

Consider the two equations:
3x− 5y = 2
2x+ 3y = 14

Expressed as matrices,

AZ = B,whereA =

[
3 −5
2 3

]
,B =

[
2
14

]
,Z =

[
x
y

]
AZ = B has a solution if A is invertible, meaning A−1 exists and

AA−1 = I =

[
1 0
0 1

]
.

Without showing the computation of A−1, the solution to the two
equations is found by:

Z = A−1B =

[
3
19

5
19−2

19
3
19

] [
2
14

]
=

[
76
19
38
19

]
=

[
4
2

]
Thus x=4, y=2

is a solution to the equations. The denominator 19 in the entries
for the inverse matrix is a special value assigned to A, called its
determinant, a number in R. If the determinant of a matrix has an
inverse in R, then the matrix is invertible. The determinant of a
matrix is used to calculate the entries in the inverse matrix when it
exists. Invertibility is discussed in the next section.

10.4 Slight Digression: Basic Notions of Vector Spaces

The rows and columns of a matrix are vectors, in the sense of n-
tuples with a defined arithmetic. Going beyond numbers and indi-
vidual matrix computations, the theory of solutions of linear equa-
tions is based in collections of vectors, called vector spaces. The
machinery associated with vector spaces allows the underlying con-
cepts to be unified and visualized. Most of the machinery needed
is also found in a generalization of a vector space called a module,
which is a topic linked to general ring theory. But for the purpose
here, discussion is in terms of vector spaces, which require only the
machinery of fields already introduced.
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Staying with the notion of vectors as n-tuples, given a field F, the
set of all n-tuples of elements of F , n ≥ 1, form a vector space F n,
aka V n(F ), of dimension* nover F , and each n-tuple element of F n

is called a vector. (*Note this is not a definition of the dimension of
a vector space, but rather an equivalent usage for coordinate spaces
such as F n.)

The vectors in F n can be added, where addition is associative
and commutative, where additive inverse vectors exist for each vec-
tor, and there is an additive identity vector. Vectors can be multi-
plied by numbers from F , also called scalars, where multiplication
is associative, scalar multiplication distrubutes over vector addition,
vectors distribute over scalar addition, and the number 1 in F leaves
a vector unchanged under multiplication.

Given a vector space V , a subset of vectors in V can also form a
vector space, called a subspace of V . Typically, a subspace arises as
the image or kernel of a linear mapping on a vector space, or as a
direct sum or quotient of two subspaces (not further defined here).
The orthogonal complement of a vector space V is the space of all
vectors perpendicular to all the vectors in V , V ⊥.

Examples of vector spaces follow. Any sort of objects, for which
the rules of vector arithmetic apply, can become a vector space.

The trivial vector space is simply the zero vector, 0. R is itself a
vector space of dimension 1 over R.

C is a vector space of dimension 2 over R, and more generally,
a field extension forms a vector space over the extended field, using
the arithmetic of that field. E.g. R is a vector space of uncountable
dimension over Q. Rn is a vector space of dimension n over R.
In particular, when n = 3, the vectors correspond to the set of all
points in Euclidean space. In R3, subspaces are 0, the lines through
the origin, the planes through the origin, and R3 itself. The set
of all m× n matrices over F form a vector space of dimension mn
over F. The set of all functions, continuous and single-valued on the
closed unit interval, is an uncountable infinite-dimensional vector
space. Polynomials over F of degree n or less form an n-dimensional
vector space over F . If polynomials of all degrees are considered, the
dimension is countably infinite. Pertinent to the current discussion,
solutions of a set of homogeneous linear equations form a vector
space over F, because adding such solutions together or multiplying
by elements of F yields further solutions.
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Given vectors, vi ∈ F n, their linear combination is expressed by
a1v1 + a2v2 + . . .+ anvn

where ai are scalars from F . All linear combinations of vectors in
some subset of a vector space generate a subspace, and the vectors
in the set are said to span the subspace.

Consider a set of vectors vi which have some linear combination
equal to 0, the zero vector in F n; then the vectors in the set are
said to be linearly dependent. If no such linear combination exists,
the set of vectors are said to be linearly independent. Equivalently,
for the matrix form of a system of equations AZ = B above, the
columns of A are linearly independent only if Z is the zero matrix
whenever B is the zero matrix.

The transpose of a matrix A, written AT , is the matrix Awith
its rows and columns exchanged; if the elements of A are Aij, the
elements of AT are Aji. The principal diagonal of an n× n matrix
A goes from A11 to Ann. The transpose of a square matrix flips the
elements about the principal diagonal.

All the remaining examples come from R3, providing the most
intuitive feel for the concepts. An R3 discussion generalizes to any
finite-dimensional vector space and in particular F n. R3 is a 3-
dimensional vector space over R, the set of all triples of real numbers
(x, y, z). Consider the vectors:

ê1 = (1, 0, 0)T , ê2 = (0, 1, 0)T , ê3 = (0, 0, 1)T

The set of all linear combinations of êi generates the entire vector
space R3. Furthermore, the êi are linearly independent. A linearly
independent set of vectors that spans a vector space is called a basis.
Thus, êi are basis vectors for R3, or simply a basis for R3. Geomet-
rically, the êi are just the x,y, z coordinate unit vectors of R3. The
condition for orthogonality of two vectors is that their dot product
is 0. The êi are thus mutually orthogonal. And because they are
each of unit length, they are called an orthonormal basis for R3, also
known as the standard basis for R3. Any set of linearly indepen-
dent vectors in R3 form a basis for R3, and all such bases contain
the same number of vectors, called the dimension of the vector space
over R, written dimR or just dim. (For vector space F n, the number
of elements in each vector and the number of vectors in each basis
are the same.) Thus the 3-dimensional vector space R3 has three
linearly independent vectors in its standard basis. Given a vector
v ∈ R3, there is a unique way of writing v as a linear combination
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of basis vectors. For example,
v = a1ê1 + a2ê2 + anê3
for some coefficients ai ∈ R, where the ai are called the coordi-

nates of v relative to the selected basis vectors êi. For the orthonor-
mal basis êi, the coordinates are the usual coordinates of Euclidean
space.

The vector space concepts above can be applied to systems of
linear equations. Consider vector space F n over a field F , together
with a general system of m linear equations with n unknowns written
as:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm
where values of the coefficients and unknowns are in F . As shown

in the prior section, there is a matrix form of these equations, written
AX = B, but now with A of size m× n.

The equivalent vector form of these equations is in form Ax = b:

x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn

 =


b1
b2
...
bm


Initially, consider just the column space generated by the left

hand vectors. The collection of all possible linear combinations of
the vectors on the left-hand side span a subspace called the column
space of A, col(A) ⊆ Fm. If the column vectors are linearly indepen-
dent, col(A) = Fm. The equations have a solution just when b is
in col(A). If every vector in col(A) has exactly one expression as a
linear combination of the given left-hand vectors, then any solution
is unique. In any event, col(A) has a basis of linearly independent
vectors that do guarantee exactly one expression; and the number of
vectors in that basis (its dimension) cannot be larger than m or n,
but it can be smaller. The existence of m independent vectors guar-
antees a solution regardless of the right-hand side, which otherwise
is not guaranteed.

The null space of matrix A contains all solutions to Ax = 0.
Referring to the m× n matrix A above, the subspaces of F n are:

row space of A, row(A), aka col(AT ) null space of A, null(A)
and the subspaces of Fm are:
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column space of A above, col(A) null space of AT , null(AT ).
Any linear transformation from F n → Fm can be represented by

an m× n matrix. The above shows that A is associated with such a
linear projection, specifically a mapping from the row space to the
column space, and from the null space to 0, where solutions in the
null space are in the kernel of map.

The following additional relations hold between the subspaces:
null(A) = row(A)⊥

null(AT ) = col(A)⊥

dim col(A) = dim row(A) = r
dim null(A) = dim null(AT ) = n− r
where dim row(A) is called the rank of A.
To understand the connections between the four spaces asso-

ciated with solutions of Ax = b, there are different conditions to
consider, corresponding to constraints on the rank of matrix A.
There will be seen a close connection between solutions of the non-
homogeneous equation above, and homogeneous equation Ax = 0.
In each case where a particular solution xp exists to Ax = b, the
total solution set can be written as:

{xp + xn : xn is any solution to Ax = 0}
The non-homogeneous equation is a translation of the homoge-

neous equation by the vector xp.
The ‘unique solution’ case corresponds to r = m = n, where the

columns of A are linearly independent (in other words, A is invertible
and the column vectors form a basis for F n). Then col(A) = row(A) = F n

and null(A) = null(AT ) = 0. There is a unique solution: xp + 0 to
the system of equations, where xp ∈ row(A) and the only solution
in null(A) is 0. In Euclidean space, xp is a point.

In the case r = m < n, A has full row rank, there at least as many
unknowns as equations, A has a right inverse, and there are infinitely
many solutions of the form xp + xn. For example, in Euclidean space
with n = 3, if m = 2, the two equations describe planes and then
the solution is the set of points on the line at the intersection of
the two planes (because rank is 2, the planes cannot be parallel). If
m = 1, the solution is the plane described by the equation.

In the case r = n < m, A has full column rank, there are fewer
unknowns than equations, A has a left inverse, and there may be
one solution, or none. There will be a solution xp + 0 if b ∈ col(A).
Else, xp does not exist (the equations are not consistent).

6



The final ‘everything else’ case has r < m and r < n. There can
be either infinite solutions, or none. Infinite solutions generally ob-
tain if m < n, when xp ∈ row(A). No solutions result if m > n and
r < n.
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