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Preface

Fearless Symmetry is an expository book for non-specialists, aimed
at an understanding of mod(p) linear representations of Galois groups.
The following are notes, of a very non-special student, derived from
study of Fearless.

1 Representations

This introduction to a bare notion of representation lays out the
concept using the counting toy model. The represention concept will
become richer and more powerful when we begin the later discussion
of Galois Groups.

1.1 Motivation

The definition of representation depends on the usual definitions for
set, function, 1-1 correspondence, and morphism. A morphism is
an abstract correspondence between sets that preserves structure.
A representation is a morphism between an abstract object about
whose structure we want to learn, and a model object whose struc-
ture is well-understood.

1.2 Counting Toy Model

Counting is a 1-1 function (bijection) between an abstract object to
be counted, set S with n elements, and the model object Nn, the set
of natural numbers with the same number of elements (cardinality)
{1, 2, 3, . . . , n} , where one uses {} to enclose the elements in a set.
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The preserved structure under the 1-1 counting morphism is the
cardinality of the represented set.

In the notation of representations, A → B states that model
object B with well-known structure represents abstract object A via
a morphism (arrow). Thus, a representation has three components,
two objects and a morphism. Facts regarding the abstract structure
can now be inferd from the model structure. These structural facts
are considered to be the common form of the objects.

One may indicate by S → Nn that the natural numbers 1, 2, . . . , n
represent (count) a set with n elements, S.

1.3 Aside: Morphisms in Specific Contexts

Morphism is a term suited to this abstracted discussion in Fearless.
But more specific object-related terminology is generally used, as in
the following concrete realizations of morphism.

If the object is a set, a morphism is simply a function that
preserves structure, e.g. a function on an ordered set that preserves
order.

If the object is a group or vector space, morphisms are called ho-
momorphisms or transformations. For example, a linear trans-
formation on a vector space preserves vector addition and scalar
multiplication.

The homomorphisms on Euclidean space, preserving both dis-
tance and a given point, form the group of orthogonal transforma-
tions of space.

A homomorphism that establishes a 1-1 correspondence between
all the elements in the source and target sets (that maps the source
onto the target) is called an isomorphism.

Only within discussions of the abstract object called a category
is the naked term morphism likely to be encountered.

2 Groups

Sets with group structure are the most common mathematical ob-
jects for formalizing the concept of symmetry. In the remainder, the
objects under discussion most often will be groups.
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2.1 Motivation

When S and T are sets, one writes a direct product S × T to mean
the larger set formed from all possible pairs of elements, taking
one from S and one from T . A binary operator ⊙ is associative if
x⊙ (y ⊙ z) = (x⊙ y)⊙ z. All morphisms are associative.

A set S forms a group under the following conditions:

• an associative binary composition operator ⊙ : S × S → S

• an identity element eS, where s⊙ eS = eS ⊙ s = s for each ele-
ment s in S

• inverse elements s−1 for each element s, where s⊙ s−1 = s−1 ⊙ s = eS

• commutative group operator (optional), if s⊙ s′ = s′ ⊙ s for all
elements s, s′

2.2 Group Examples

• SO(3), the Lie (continuous) group of rotations of a sphere, is a
non-commutative group. One means by the group operation on
two rotations, r1 ⊙ r2, that r2 is done first, then r1. These mor-
phisms initiate continuous (arbitrarily small) transformations,
which can be summed (integrated).

• Z, the integers under addition, is a discrete commutative group.

2.3 Further Group Notions

A typical notation for the composition operator is: ⊙ for non-
commutative groups; + for commutative (Abelian) groups. Often
one just writes ab, rather than a⊙ b, which can be referred to gener-
ically as ’multiplication’. One says the group is closed under the
group operator because it maps pairs of elements of S back into S.

The order of a finite group G, |G|, is the cardinality of the set G.
For every element g in finite group G, there is some power of g, say c,
that is the least positive integer such that gc = eG. Each element g
thus defines a cycle, and c is the order (or period) of element g, o(g).

A cyclic group consists of the identity and one cyclic element:
G = {eG, g, g2, g3, . . . , gc−1}. One says G is generated by g, and
|G| = o(g). A cyclic group is Abelian. For every finite group G
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containing element g, o(g) is a factor of |G|. A group G with prime
|G| is necessarily cyclic, and has no proper subgroups.

Group structures may be identified by their element cycles as fol-
lows, where e is the identity, a, b, , , are abstract elements, and Cn

is a cyclic group of order n. The direct products of cyclic groups
below is a shorthand notation. For example, the Klein vierergruppe
(four group or quadratic group), written C2 × C2, is a way of writ-
ing the 4-element group {e, a, b, ab = ba} obtained by {e, a} × {e, b}.
Similarly, the other direct product representations above can be ex-
panded.

2.4 Aside: Canonical Group Forms Up To Order 8

Abelian (11):

e C2 C3 C4 C5 C6 C7 C8

{C2 × C2} {C4 × C2} {C2 × C2 × C2}

Non-Abelian (3):

dihedral order 6: D6 (aka S3) : a
3 = b2 = (ab)2 = e

dihedral order 8: D8 : a
4 = b2 = (ab)2 = e

dicyclic quaternion order 8; Q : a4 = e, a2 = (ab)2 = b2

2.5 Subgroups and Cosets

If H is a subset of group G, H is called a subgroup of G if H is closed
under the group operator of G. A subgroup contains the parent
group identity element and all of its own inverse elements. G itself,
and the group consisting only of eG, are the improper subgroups of
G. All other subgroups are called proper.

Let G be a group and H a subgroup, and a an element in G.
The left coset of H in G determined by a is defined as aH, and
the right coset of H in G determined by a is Ha, where a is called
the representative of each coset. G/H, the coset space of H in G,
is the set of left cosets (or right cosets) of H. All the cosets of H
have the same cardinality as H. The index of H in G, [G : H] is the
number of left cosets (or right cosets) of H, the cardinality of G/H.
Lagrange proved for finite G that [G : H] = |G|/|H|, and|H| | |G| (|
means divides).
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A subgroup N of G is said to be normal (invariant), written
N ◁G, if aNa−1 = N for all a in G. If G is Abelian, every subgroup
is normal. Given N a normal subgroup, the coset space G/N is a
subgroup called the quotient group of G by N . The identity of G/N
is N . For example, if G = Z and H = 2Z, the cosets of H are the
even and odd integers. The quotient group Z/2Z, read the integers
mod the even integers, is a group with two elements, isomorphic to
{0, 1} using addition (mod 2) [see Chapt. 4, Modular Arithmetic].

2.6 Group Homomorphisms

Given groups G and H, a group homomorphism, f : G → H is
structure-preserving, meaning f(ab) = f(a)f(b). Define the kernel
of f:

Ker(f) = {a ∈ G : f(a) = eH}
and the image of f:
Im(f) = {h ∈ H : h = f(a), a ∈ G}
where : means such that and ∈ means contained in. ThenKer(f)

is a subgroup of G, Im(f) is a subgroup of H, Ker(f)◁G, every
normal subgroup of G is the kernel of some group homomorphism
on G, and G/Ker(f) ∼= Im(f) (∼= means is isomorphic to).

3 Permutations

This chapter defines properties of permutations, and the representa-
tion of abstract groups by their corresponding permutation groups.

3.1 Motivation

A goal of ANT is to formalize information regarding solutions to
polynomial equations with integer coefficients. Galois permutation
groups permute the roots of polynomials, a useful tool.

3.2 Symmetric Group of Degree n

Given a finite abstract group G (or any finite set) with n ele-
ments, the group of n! permutations of the elements of G (bijec-
tions : G → G) forms a group called the symmetric group of degree
n (called SG or ΣG). In particular, when G = Nn, the symmetric
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group is written Sn. Because permutations are bijections, they have
inverses that undo the corresponding permutation.

A permutation has one or more cycles, where each cycle’s ele-
ments map in sequence until an element repeats. One expresses a
permutation’s cycle decomposition by grouping in parentheses the
elements in each cycle. E.g., given set {a, b, c, d}, the permutation

p : {a, b, c, d} → {b, c, d, a}
has a single cycle (abcd) where p takes a to b, b to c, c to d, d

back to a. Similarly,
p : {a, b, c, d} → {b, a, d, c}
has two cycles (ab)(cd), called transpositions, where p takes a to

b, b back to a, c to d, d back to c.
p : {a, b, c, d} → {a, c, b, d}
has three cycles (a)(bc)(d).
p : {a, b, c, d} → {a, b, c, d}
has four cycles (a)(b)(c)(d), the identity permutation. The lengths

of the cycles of a permutation reveal useful information about the
permutation.

3.3 Notions of Permutations, Symmetry Groups

Disjoint permutation cycles commute. Every element of Sn (permu-
tation) can be written uniquely as the product of disjoint cycles of
length greater than 1, and can be written as a product of transposi-
tions (not uniquely, the transpositions are not disjoint). A permu-
tation is even or odd depending on whether it can be written as a
product of an even or odd number of transpositions.

One can consider each element of G as a permutation function
acting through the group operator. Let gi be all the elements of G
and p be one of these elements also. Then gi → pgi is a permutation
of all elements of G via multiplication by p. The set of permutations
so defined form a group isomorphic to G, say G′ called the regular
representation of G. If G is non-Abelian, one would distinguish right
and left regular representations. Cayley showed that any group G
is isomorphic to a subgroup of ΣG. In particular, the regular rep-
resentation G′ is a subgroup of ΣG. In our representation notation,
G → G′.

The set of even permutations is a normal subgroup of Sn, called
the alternating group An, where |An| = n!/2. For n > 2, An is gen-
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erated by the 3-cycles in Sn.
ΣG, An, and the regular representation of G are large and not

of much mathematical interest. A smaller permutation representa-
tion of G is obtained by considering ΣG/H for subgroup H of group
G. ΦH : G → ΣG/H is a group homomorphism and Ker(ΦH) is the
largest normal subgroup of G contained in H.

3.4 Triangle Symmetry Groups

Consider symmetries of triangles of varying regularity together with
their symmetry groups. Each type of triangle symmetry has a corre-
sponding representation group Ttriangle consisting of motions in the
plane (transformations) that map the triangle onto itself (that pre-
serve the form of the triangle). Tnon−isoceles consists only of the iden-
tity transformation. Tisoceles consists of the identity and a reflection
about the axis of symmetry. Tequilateral consists of identity, two ro-
tations about the center, and three reflections. Thus, the respective
symmetry groups have 1, 2, and 6 elements, in order of increasing
object symmetry. The group Tequilateral is the dihedral group of order
6 above, D6, and is a special case of a regular n-sided polygon whose
transformation group is the dihedral group of order 2n. Tequilateral is
isomorphic to S3, the symmetry group with |S3| = 3!, representing
abstract groups of order 3. Such transformation groups of regular
polygons are subgroups of ΣR2 , where R2 = R× R, the Cartesian
plane.
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